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A N I S O T R O P I C  M O D E L  O F  A N  E M I T T I N G  

E L E C T R I C  A R C  

A. F. Bublievskii  UDC 523.537.5 

An analytical procedure is proposed for obtaining exponential dimensionless equations to calculate the char- 

acteristics of an electric arc in a plasmatron channel that is based on using an exponential approximation 

of  the temperature dependence of  electric conductivity with different exponents for longitudinal and 
transverse coordinates. 

Solving rather complex nonlinear problems of calculating the characteristics of electric arcs in plasmatron 

channels by numerical methods generally does not cause any fundamental difficulties. To bring the problem closer 

to real processes, one is led to employ numerous variable parameters. However, it is rather difficult to arrange 
calculation results into a certain system and to find hidden relationships between these variables. The methods of 

the approximate similarity theory permit the employment of a much smalIer number of generalized variables, but 

obtaining dimensionless dependences involves expensive experiments. Furthermore, the semiempirical character of 

generalized formulas restricts the possibilities for their subsequent analysis. 

Use of analytical methods that permit us, to a great extent, to circumvent the indicated difficulties is 

strongly restricted by the requirement on nonlinearity of the equations. A more efficient use of the analytical 

methods involves difficulties in solving nonlinear problems. One way to surmount them that leads to generalized 
exponential formulas is discussed below. 

We write the system of equations for an electric arc in a cylindrical channel with longitudinal gas flow 

pCpVz OT 1 0 ( r 2 O T )  
Oz - r Or -~r + aE'~z - O '  (1) 

R 
a = f pv rdr, (2) 

o 

R 
1 = f o e # r .  (3) 

o 

In truncated energy Eq. (1), we ignore heat conduction in the longitudinal direction, turbulent transfer, 
convection in the radial direction, the kinetic energy of ordered motion, viscous dissipation, and the radial 

component of Joule dissipation. The radiation is taken account of in a volume degree of approximation. In addition, 

below we assume Cp/2 = const and p Vz = const and divide the space in the radial direction into conducting 

T 
(a ~ 0) and nonconducting (a = 0) bands. By introducing the function of thermal conductivity S = f 2dT as well 

0 

as 7 -- r /R ,  -~ = z / R ,  AS -- S - S., a -- GCp/nR~, a = ao(AS/ASo) no, and Q = Qo(AS/ASo) we transform Eq. (1) 

for the conducting band using (2) and (3) to the form 
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Co (AS~/ ASo) ~ fl 
2 -- Qo ( A S I / A S o )  R 2 .  

(2~R) 2 f cr 0 (ASI /ASo)naTd-[  
0 

We solve Eq. (4) for the boundary conditions 

(4) 

AS I (~ ,  0) = 0 ;  AS I (7 , ,  ~) ;  AS I(0 ,  z ) *  0o. (5) 

The similar equation and the boundary conditions for the nonconducting band are written as follows: 

0ASII 1 0 (_0ASII) 
a - -  - r ; (6) 

O~ 7 0 7  07 

AS n ( 7 . ,  2)  = 0 ; ASII (1, ~) = AS I ; ASII ( 7 ,  0) = AS I . (7) 

We solve Eqs. (4) and (6) by separating the variables. We represent the solution of (4) as the product of two 

functions ASI = 0(7)0(~'). By omitting now the bar over ~ and 2 we have 

oo oo _- o ( ~176 1 oo) o"o ? _ boR~O0. ~8) 

(z~R) 2 ~o (O/ASo) n" I On~ 
0 

To be able to separate the variables, we substitute the linear function xO for 0 ~ in the numerator of the 

Joule component of Eq. (8). With this procedure we perform a separate approximation by different coordinates of 

the dependence a = f(AS), introducing an artificial (approximation) anisotropy for the electrical conductivity of the 

plasma. Along the longitudinal coordinate the electrical conductivity changes with S according to a power law and 

along the radius to a linear law. A partial solution of (8) with condition (5) and in view of 0 n~ = io9 can be obtained 

as 
1 

AS I (r, z) = AS00 [1 - exp ( -  Bz) ] n~ Jo ( ,u l r / r* ) ,  (9) 

where/,i  is the first root of the characteristic equation Jo(kr.) = 0, 

..1 1 - n o 

ASo0 = A %+1 C l+n~ (I0) 

is the value of S on the axis as Bz --, 0% 

A = 
12~As~) ~ ~11) 

2 2 22 22 2 '  
k o (27rR) aor ,J  0 ~Ul) (1 + bQR r.//al) 

B = 

22 2 
(no+ 1)/a2srR2 (1 + bQR r . / # l  ) 

r.ZGCp 

The constant COO in (10) in the interrelationship with tc in A will be determined below. 

(12) 
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g~ 

The coefficient ko is obtained in calculating the integral f O%dr in (8), where 0 ffi CooJo(,ulr/r.) is the 
0 

solution of the equation for O(r) upon separation of the variables. By resorting to the expansion of 0 no into a series 

at the point 0 = 1 and confining ourselves to three terms of the expansion, we obtain an expression for determining 

ko: 

(I - no) Pl  
/~o- zr1(u: ) +no+ 

n.  (no - I)/~V~ ~I) 
4 

no (no - I)/~1 ( la)  
- n o ( n  o - 1)  + 411 (ill) 

Expression (9), when na = 1 and bt2 = 0, coincides with G. Stain's solution [i ] and, when na -- 1 and Bz --, oo, bQ 
ffi 0, with G. Mekker's solution [2 ]. 

The solution of (6) with conditions (7) can be represented as a series [3 ]: 

ASII ( r ,  z) = m AS t 

where 

In r 
( Jo(an) ) JO(an) UO(anmr) 

1 x 
r. 

in r. "~ Jo (an) - lO (ann) Jo (an) + JO (anm) n=l 

(2) 
an (14) exp - ' - d - Z  , 

UO (anmr) = Jo (anmr) YO (anm) - Jo (anm) II0 (anmr) ; (15) 

a n are roots of the characteristic equation 

Jo (an) YO (anm) - Jo (anm) YO (an) = O. (16) 

We determine the boundary of the conducting band from the condition 

~ I _ ~ I 
Or r=r. Or 

(17) 

By differentiating (9) and (14) and by substituting into (17) we obtain an expression for determining r ,  

C1+% . oo #r~l (,"1) ASo 
AS 1 

1 

I t- • 2 2 22 2 [ 1 - e x p ( - B z )  ] = 
k o (2a-rR) 2 %ASoJ 1 OXl) r.  (1 + baR r . / /~l)  (2) 

I ~ 1 a n 
2 ~ 2 - exp - -  z 

In r .  n-"= 1 k n 1 - d 
(18) 

where 

k n - 
So (~n) ro (~n) 
Jo (~'nm) rO (anm)" 

(19) 

To determine the constant Coo, we need to consider the case of Bz ~ o0 and ct2z/a --, oo, i.e., the charac- 

teristics of a nonconsumable arc or an arc on the portion of developed heat transfer (the asymptotic portion), Eq. 

(I) for which at bQ = 0 appears as 
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1 d ( d A S )  (20) 
r dr r--~-r + JzEzR2 = O. 

We multiply (20) by 2~Rdr and integrate once between 0 and 1, after which we obtain 

e d  = 2ar, Rq l ,  (21) 

where 

1 dAS]  (22) 
q1 = R dr 

r= I 

Expression (21) holds for any dependence or(S). To determine Coo, we resort to (14), (18), (21), (22), 
and the expression for Ez that can be obtained from (3) in view of (9), with the conditions Bz--, oo and 
a2z/a --, oo: 

E Z ~-. 
~11 (23) 

%(1 -no) n o 

l+n o 2 2  na+l 
COO 2~R r .Y 1 ( i l l ) A  

We obtain 

By employing (19) and (24) from (3), (9), (14), (18), and (22) we obtain the final dimensionless 

expressions for determining the radius of the conducting band, the distribution of the thermal conductivity function, 

the electric field strength, and the heat flux on the wall. We write them respectively in expanded form: 

1 ? 
2 2  2 R2oASo 47r2koJ12 ( i l )  r2 (1 + Qo R r , /ASoPl )  

( #1 (1 + qoR r./aSo#O ~Ra ) ( n o +  l)  2 2 2  2 
x 1 - exp - 2 - -  z 

~ .  GCp 

X 

1 

t- 
%+t 

1 

J~ (iO/q - AS 0 In ( 1 / r .  2) + 2 2 -  =1 k n 1 
exp - -  a n z ; 

GCp 
(25) 

• 
R2tYoASo 

AS I (r ,  z) 

AS o 2 2 2  2 
4a:Zkd 2 ( i l l  r. (1 + Qo R r . /ASoPl )  

1 - exp 
(no + t),u~ 

- 2 GC---p z 
r .  

1 
na+l (rl JO /~ 1 r---~ 

(26) 
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ASII (r ,  z) AS 1 ; (27) 

AS o ASo In r ,  + :~ f - -  U 0 ( a n r / t , )  exp - an  --GCp z 
n = l k  n - I 

ezR~o at 
2 

I 2~koJ10Q) r, xl l ? 

2 2 2 2 R20AS0 4arXkoJ12 (/*1) r, (1 + Qo R r . / A S o / ~ l )  

• 

1 - exp 

22 2 / 
(n o + 1)/21 (I + Qo R r , / A S o t t l )  zcRA 

- -  2 - - Z  
r, GCp 

% 
%+I 

(28) 

ql R ASI 1 + 2 .-T---- exp a n - -  z 

ASo AS0 In (1/ r , )  =1 k n - 1 GCp 

The complex Po = I 2 / R 2 a o A S o  in (25)-(29) is a modified, as applied to the arc, Pomerantsev number [3 ]. 

The generalized function FI E = E z R 2 a o / I  is a modification of the known similarity number Fly  = U D a o / I  [4 ] when 

the electric field strength is determined rather than the potential difference on the arc. The complex variable Flq 

= q l R / A S o  at 2 = 2o = const with ql -- a A T o  substituted transforms to the known Nusselt number Nu = a R / 2  o. 

Furthermore, the number KQ = Q o R 2 / A S o ,  reflecting the radiant-to-convective transfer relation, and the parametric 

number KS = - A S t / A S o  enter into the above expressions. In (25)-(29), there is also the known Pecklet number: 

Pe = GCpo/~/~o. 
By employing the symbols Po, Pe, KQ, KS,  FIE, and Nu we can represent expressions (25)-(29) as 

dimensionless equations with numerical coefficients: 

Po 

10.6kar. 2 (1 + 0.17KQr 2) 
x 1 - exp 

5.78 (1 + 0.17KQr2,) 

2 
Pe r, 

I oo 
= o.sKs 1 + 2 E k~ .-T---- exp 

In ( I / r , )  a~=.l k n - 1 (2t 1 C~ n - -mZ  
Pe 

(3o) 

• [ 1 - exp 

ASII ( r ,  z) 

AS o 

AS I (r ,  z) 

AS o 

Po 

10.6kor, 2 (1 + 0.17Kor, z) 
X 

1 

/ t r/ r2 z Jo b t 1 - -  ; 
r ,  

- K S 

[ /2/] 
In ( r / r . )  k n a n 
- -  + 3.14 2--- U O ( a n r / r , ) e x p  - - - z  ; 

ln r ,  n=l k n -  1 Pe 

(31) 

(32) 
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0.74 
Fie = 

kor: 
Po 

10.6kar. 2 (1 + 0.17Kar. z) 
x 1 - exp 

5.78 (n o + 1) (1 + 0.17KQr, 2) 

Pe r, 2 

r/a 

h a +  1 
;(32) 

Nu = K S In (1/r . )  /21 0o k/l  o~ n 
+ 2 2 .  ̀  - T - - - - e x p  - - - z  

n=l k n - 1 Pe 
(34) 

It is evident that the dimensionless radius of the conducting zone, thermal conductivity function, electric 
field strength, and heat flux into the wall are the functions of the numbers Po, Pe, KQ, and KS. Calculations using 
the dependences obtained are complicated in the general case by the transcendence of Eq. (30) for determining 
the conducting band radius. However, for some particular cases the expressions are substantially simplified. In 
[5 ], dimensionless equations are given for the asymptotic portion of an arc in a channel (a nonconsumable or weakly 
ventilated arc). Comparison of the calculation with experiment made in this work for two gases (for argon and air) 
in physical and generalized coordinates showed their satisfactory (_-.26 %) agreement. 

The proposed method enables us to obtain dimensionless dependences for calculating the characteristics 
of electric arcs without using an experiment, which up to now has been done only by generalizing a great body 

experimental data. 

N O T A T I O N  

p,  density; C o, specific heat at constant pressure; a, electrical conductivity; 2, thermal conductivity; V, 
T 

velocity; T, temperature; E, electric-field strength; r, z, radial and longitudinal coordinates; S = f 2dT,  thermal 
0 

conductivity function; G, gas flow rate; Q, bulk radiation density; R, D, radius and diameter of channel; I, strength 

of current; 7 = r /R;  "i= z /R ;  m = R / r .  = 1/r . ;  AS = S - S.; bQ = Qo/ASo;  a, k, I~, na, COO, x, constants; Jo, J l ,  
Y0, Bessel functions;/zl,  an, roots of characteristic equations; j, current density; q, heat flux density; Po, Pe, 
Pomerantsev and Pecklet numbers, respectively; Nu, Nusselt number; FIE, I-Iv, Fiq, KQ, KS, similarity numbers; 
U, voltage; a,  heat-transfer coefficient. Indexes: z, longitudinal component; *, boundary of conducting band; 0, 
base value; 1, value on the wall; 00, axial value; I, II, conducting and nonconducting bands, respectively. 

R E F E R E N C E S  

I. 

2. 
3. 
4. 

5. 

G. A. Stain, Investigations at High Temperatures'-'[in Russian ], Moscow (1967), pp. 94-112. 
G. Mekker, A Moving Plasma [Russian translation ], Moscow (1961), pp. 439-472. 
A. V. Luikov, Theory of Heat Conduction [in Russian ], Moscow (1967). 
S. S. Kutateladze and O. I. Yas'ko, Inzh.-Fiz. Zh., 7, No. 4, 25-27 (1964). 
A. F. Bublievskii and O. I. Yas'ko, Proc. of 1 l th Intern. Symposium on Plasma Chemistry. Loughborough 
University. Loughborough, England, Vol. 1, pp. 302-307 (1993). 

672 


